73 research outputs found

    An improved rate region for the classical-quantum broadcast channel

    Full text link
    We present a new achievable rate region for the two-user binary-input classical-quantum broadcast channel. The result is a generalization of the classical Marton-Gelfand-Pinsker region and is provably larger than the best previously known rate region for classical-quantum broadcast channels. The proof of achievability is based on the recently introduced polar coding scheme and its generalization to quantum network information theory.Comment: 5 pages, double column, 1 figure, based on a result presented in the Master's thesis arXiv:1501.0373

    The strong converse theorem for the product-state capacity of quantum channels with ergodic Markovian memory

    Get PDF
    Establishing the strong converse theorem for a communication channel confirms that the capacity of that channel, that is, the maximum achievable rate of reliable information communication, is the ultimate limit of communication over that channel. Indeed, the strong converse theorem for a channel states that coding at a rate above the capacity of the channel results in the convergence of the error to its maximum value 1 and that there is no trade-off between communication rate and decoding error. Here we prove that the strong converse theorem holds for the product-state capacity of quantum channels with ergodic Markovian correlated memory.Comment: 11 pages, single colum

    Efficient achievability for quantum protocols using decoupling theorems

    Full text link
    Proving achievability of protocols in quantum Shannon theory usually does not consider the efficiency at which the goal of the protocol can be achieved. Nevertheless it is known that protocols such as coherent state merging are efficiently achievable at optimal rate. We aim to investigate this fact further in a general one-shot setting, by considering certain classes of decoupling theorems and give exact rates for these classes. Moreover we compare results of general decoupling theorems using Haar distributed unitaries with those using smaller sets of operators, in particular ϵ\epsilon-approximate 2-designs. We also observe the behavior of our rates in special cases such as ϵ\epsilon approaching zero and the asymptotic limit.Comment: 5 pages, double column, v2: added referenc

    Polar codes in network quantum information theory

    Get PDF
    Polar coding is a method for communication over noisy classical channels which is provably capacity-achieving and has an efficient encoding and decoding. Recently, this method has been generalized to the realm of quantum information processing, for tasks such as classical communication, private classical communication, and quantum communication. In the present work, we apply the polar coding method to network quantum information theory, by making use of recent advances for related classical tasks. In particular, we consider problems such as the compound multiple access channel and the quantum interference channel. The main result of our work is that it is possible to achieve the best known inner bounds on the achievable rate regions for these tasks, without requiring a so-called quantum simultaneous decoder. Thus, our work paves the way for developing network quantum information theory further without requiring a quantum simultaneous decoder.Comment: 18 pages, 2 figures, v2: 10 pages, double column, version accepted for publicatio

    Decoupling with random diagonal unitaries

    Get PDF
    We investigate decoupling, one of the most important primitives in quantum Shannon theory, by replacing the uniformly distributed random unitaries commonly used to achieve the protocol, with repeated applications of random unitaries diagonal in the Pauli-ZZ and -XX bases. This strategy was recently shown to achieve an approximate unitary 22-design after a number of repetitions of the process, which implies that the strategy gradually achieves decoupling. Here, we prove that even fewer repetitions of the process achieve decoupling at the same rate as that with the uniform ones, showing that rather imprecise approximations of unitary 22-designs are sufficient for decoupling. We also briefly discuss efficient implementations of them and implications of our decoupling theorem to coherent state merging and relative thermalisation.Comment: 26 pages, 3 figures. v2: 19 pages, 3 figures, both results and presentations are improved. One conjecture in the previous version was proven. v3: 16 pages, 1 figure. v4: doi links are added, published versio

    The classical capacity of quantum channels with memory

    Get PDF
    We investigate the classical capacity of two quantum channels with memory: a periodic channel with depolarizing channel branches, and a convex combination of depolarizing channels. We prove that the capacity is additive in both cases. As a result, the channel capacity is achieved without the use of entangled input states. In the case of a convex combination of depolarizing channels the proof provided can be extended to other quantum channels whose classical capacity has been proved to be additive in the memoryless case.Comment: 6 double-column pages. Short note added on quantum memory channel

    Calculating a maximizer for Quantum mutual information

    Get PDF
    We obtain a maximizer for the quantum mutual information for classical information sent over the quantum amplitude damping channel. This is achieved by limiting the ensemble of input states to antipodal states, in the calculation of the product state capacity for the channel. We also consider the product state capacity of a convex combination of two memoryless channels and demonstrate in particular that it is in general not given by the minimum of the capacities of the respective memoryless channels
    corecore